Net Fracturing Pressure and Slurry Efficiency

Liberty Engineering Concepts

Indirect Measurements to Determine Frac Dimensions

Injected Volume Balloon Elasticity – Radius R Net Pressure P_{net} Injected Volume, Efficiency Layer Rock Properties Net Pressure p_{net} Length L, Height H, Width w

Critical Concepts – Net Pressure

LIBERTY

Critical Concepts – Slurry Efficiency

Low Slurry Efficiency

Smaller dimensions; higher leakoff

High Slurry Efficiency

Larger dimensions; lower leakoff

Definition

efficiency (t) =
$$\frac{V_{\text{frac}}(t)}{V_{\text{pumped}}(t)}$$

Important at the end of pumping, as frac volume, and thus dimensions, are likely at their maximum

Basic Measurements - Pressure Decline Analysis

What is obtained?

- Instantaneous Shut-In Pressure (ISIP)
- Fracture closure stress (minimum stress)
- Net pressure (at the end of job)
- Fluid efficiency (at the end of job)
- Reservoir permeability and pore pressure

LIBERTYFRAC.COM