Tensiometer Testing – Using the Tensiometer to Select Frac Surfactants

Liberty Tech Solution

Why the Heck Did We Buy a Tensiometer?

Image of what was actually purchased.

A fine example of an optical tensiometer.

Tensiometer – Closer Look

- Optical Tensiomer Basics
 - Dosing needle or syringe
 - Consistent sized drop on a surface or inside of another liquid.
 - High speed camera
 - Add-ons
 - A table that tilts in different directions
 - Or a heater to heat your fluids
 - Software
 - To make your life easier.

What Do We Measure with the Tensiometer?

- Basic properties of fluids and other liquids associated with frac.
 - Surface tension
 - Interfacial tension
 - > Can be measured on crude from an offset producer.
 - Wettability or contact angle
 - > Can be measured on core or outcrops when available.

Surface Tension (ST) – How much does your fluid like itself?

- Surface Tension
 - "Cohesive force of molecules at the surface of a solution attracting toward one another to take up the least possible surface area."
 - How much force it takes to keep a liquid together.

> Surface molecules missing half of attractive interactions.

This swimmer seems to defy the laws of physics.

ST is measured on our tensiometer by hanging a drop of a surfactant solution from the dosing syringe in air.

- CMC for a surfactant.
- The CMC is close to optimal loading of surfactant.

Interfacial Tension (IFT) – How much does your fluid like another fluid?

- Interfacial tension is sort of like surface tension for fluid / fluid interactions
 - Like surface tension, cohesive forces are involved.
 - However the main forces involved are adhesive forces
 - Interaction occurs at the surfaces or interfaces
 - > Best known distinction between the properties of two fluid interfaces.
 - Does not include the effects of the rock surface
 - Does influence major rock properties such as wettability and capillary pressure

Interfacial Tension (FT) Technique

- Based on pendant drop method.
 - An upside down drop...
- Inversed method
 - Density of the oil sample (or the drop) is lower than the water or surfactant solution.
- Surfactant solution is poured into a cuvette
 - Heated to reservoir temperature 160°F
 - Needle is submerged into the solution
 - The oil bubble dispensed through the J-shaped needle
 - > Recorded by the hi-speed camera.
 - The size of the bubble is measured
 - > IFT is calculated by the software
- Why do we care:
 - Decreasing IFT lowers capillary pressure
 - > Allows the frac to flow.
 - Too low IFT can be detrimental
 - > Inhibit imbibition

Setup for IFT

Captured bubble for IFT

Contact Angle (CA) Basics

- $_{\odot}$ Measured at interface between a liquid and a solid
 - The angle between the surface of the liquid and the outline of the contact surface
- Contact angle is a measure of the wettability of a solid by a liquid.
- \circ Frac fluids
 - Attempting to water wet an oil wet or partially oil wet rock face with the addition of surfactants.

Wetting and the Contact Angle (CA) technique

- ${\scriptstyle \odot}$ Based on captive bubble method
- \circ Before the measurement prep work
 - Rock chips are aged for two weeks
 - In corresponding oil to restore the initial reservoir state of the rock.
- Surfactant solution
 - Poured into a cuvette
 - Heated to the reservoir temperature of 160°F.
- $\circ\,$ Rock chip is positioned inside the solution
- Oil bubble is dispensed at the tip of a J-shaped needle
 - Positioned at the bottom-facing part of the chip
 - Hi-speed camera records the image
 - Software calculates the angle of oil droplet formed on the rock chip.
- $_{\odot}$ Measurements are important for frac
 - Single best indicator of oil expulsion from within the pores of shale rock

What are the Other Liquids of Interest for Frac?

- Not just a surfactant in water
- Surfactant properties are affected by other factors
 - Additional chemistries in frac fluid
 - > Frac fluid base fluids
 - 2% KCl
 - produced water or blended produced?
 - > Frac fluid system chemicals
 - Friction reducers
 - Thickening agents (solvents, suspension agents, surfactants, etc),
 - Crosslinkers
 - Buffers
 - Breakers
 - > Frac fluid formation chemistries
 - Biocides
 - Scale inhibitors
 - Clay inhibitors
 - Some have surfactant properties
 - Formation water
 - > Brines with variety of ions
 - Charges affect the surfactant properties

Conclusion

- In summary, we can measure several basic properties of fluids using our new optical tensiometer: ST, IFT, CA
 - These measurements can be used to select a surfactant that works to meet you're specific performance targets.
 - Provide a recommendation for a specific surfactant and loading tailored to your reservoir.
 - Can be used to ensure that other chemicals included in your frac fluid don't interfere with the performance

LIBERTYFRAC.COM